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Abstract. Let X be a real Hilbert Space. We give necessary and sufficient
algebraic conditions for a mapping F : X → X with a closed image set to be
the metric projection mapping onto a closed convex set. We provide examples
that illustrate the necessity of each of the conditions. Our characterizations
generalize several results related to projections onto closed convex sets.

1. Introduction

Let X be a real Hilbert space with inner product 〈·, ·〉. A set C in X is a
Chebyshev set if for each point x in X, there is a unique point of C that is
nearest to x; that is, there is a point q in C such that ‖x − q‖ < ‖x − y‖ for
all y ∈ C \ {q}. So, there is a natural “nearest point” mapping N : X → C
associated with each Chebyshev set C. Clearly, Chebyshev sets are closed. It is
well-known that every closed convex set in a real Hilbert space is a Chebyshev
set. If every Chebyshev set in an infinite dimensional Hilbert space must be
convex is an old question that remains open. In finite dimensional normed
linear spaces with smooth and strictly convex unit spheres, the closed convex
sets coincide with the Chebyshev sets. There are many partial results, in Banach
spaces of any dimension, that connect geometrical properties of the space to the
convexity of Chebyshev sets. See [5, Ch.12], [22, §2], and [2]) for survey articles
that give history, results, and questions related to the “Chebyshev problem”,
and see [1, 8, 9, 14, 15, 16, 19, 20, 21] for some well-known results in this area.

We consider closed convex sets and their associated nearest point mappings,
which we also call metric projection mappings. The set C in X is convex if
tx + (1 − t)y ∈ C for all x, y ∈ C and 0 ≤ t ≤ 1. The set C is a convex
cone if C is closed under addition, and multiplication by non-negative scalars.
Closed convex sets are fundamental geometric objects in Hilbert spaces. They
have been studied extensively and are important in a variety of applications,
including optimization, duality, linear programming, and robotics. There are
many questions related to convex sets, even in Rn, that remain unanswered. See
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[3, 5, 10, 11, 12, 18, 23] for basic properties, and surveys of results, applications,
and open questions.

For nearest point mappings onto closed convex sets, we denote the mapping
by either P or N . If we have a function defined on X with a closed image set
C and satisfying certain algebraic properties, but we neither assume that the
function is continuous nor that it is a nearest point mapping, we will denote
such a function by F .

For C ⊂ X, we define the sets C⊥ = {x | 〈x, y〉 = 0 for all y ∈ C}, and
C◦ = {x | 〈x, y〉 ≤ 0 for all y ∈ C}. We let C denote the topological closure,
intC the topological interior, and bdC = C − intC the topological boundary
of C. For points x, y ∈ X, we let [x, y] denote the line segment from x to y. For
points x, y, z ∈ X, we let ∠xyz denote the angle formed by the vectors x − y
and z − y.

We begin by recalling some results about metric projection mappings onto
closed convex sets, and observing a few immediate properties that they must
have.

Theorem 1.1. [4, Lemma] Let P : X → C be the metric projection onto a
closed convex set C in X. Then for x ∈ X and y ∈ C,

〈x− y, y〉 ≥ 〈x− y, q〉 for all q ∈ C if and only if y = P (x).

Theorem 1.2 below exhibits two special cases of Theorem 1.1.

Theorem 1.2. [7, 1.12.4] Let P : X → C be the metric projection mapping onto
a closed convex set C.

(a) If C is a subspace of X, then for x ∈ X and y ∈ C,

x− y ∈ C⊥ if and only if y = P (x).

(b) If C is a cone, then for x ∈ X and y ∈ C,

〈x− y, y〉 = 0 and 〈x− y, q〉 ≤ 0 for all q ∈ C if and only if y = P (x).

The next two theorems give algebraic characterizations for a mapping F : X →
X to be the metric projection mapping onto its image. In contrast to Theorems
1.1 and 1.2, note that there is no assumption of convexity of the image set C.
That is, the algebraic properties of F characterize both the convexity of C and
F as the nearest point mapping onto C.

Theorem 1.3. [17, Theorem 13.5.1] Let F : X → X be a mapping with closed
image set C = F (X). Then C is a subspace, and F is the metric projection of
X onto C if and only if F satisfies the following properties.

(a) F 2 = F (F is idempotent).
(b) F is linear.
(c) For all x, y ∈ X, 〈x, F (y)〉 = 〈F (x), y〉 (F is symmetric).
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Theorem 1.4 below generalizes Theorem 1.3 to cones.

Theorem 1.4. [13, Theorem 2] Let F : X → X be a mapping with closed image
set C = F (X). Then C is a closed convex cone and F is the metric projection
of X onto C if and only if F satisfies the following properties.

(1) F 2 = F .
(2) For x ∈ X and λ ≥ 0, F (λx) = λF (x).
(3) For x, y ∈ X, F (x+ y) = F (x) +F (y) if and only if 〈x−F (x), F (y)〉 =

0 = 〈y − F (y), F (x)〉.

Our objective hereafter is to determine algebraic properties of a mapping F
(assumed to have a closed image set but not assumed to be continuous) on a
real Hilbert space that will characterize F as the metric projection mapping
onto a closed convex set, thusly generalizing Theorem 1.4 from convex cones to
convex sets. In Section 2, we propose four algebraic properties, (F1), (F2), (F3),
and (F4), of a mapping F : X → X with a closed image set, similar to those in
Theorem 1.4, and we will show, in Sections 3 and 4, that various combinations
of these properties give us the desired characterizations.

Generalizing Theorem 1.4 from Hilbert spaces to Banach spaces raises dif-
ferent kinds of questions. The first and third authors have obtained results in
Banach spaces for some special cases of convex cones [6].

2. Preliminaries

Observation 2.1 below follows immediately from Theorem 1.1 above.

Observation 2.1. Let C be a closed convex set in X with 0 ∈ C, and let N
be the nearest point mapping of X onto C. Then 〈x−N(x), N(x)〉 ≥ 0 for all
x ∈ X.

Observation 2.2. Let C be a closed convex set in X with 0 ∈ C, and let N
be the nearest point mapping of X onto C. Then ‖x‖ ≥ ‖N(x)‖ for all x ∈ X.
Moreover, if x 6∈ C, then ‖x‖ > ‖N(x)‖.

Proof. If N(x) = 0, then the observation follows immediately. So, we assume
that N(x) 6= 0. By the Cauchy-Schwarz inequality and Observation 2.1, we get
that ‖x‖ · ‖N(x)‖ ≥ 〈x,N(x)〉 ≥ ‖N(x)‖2. Hence, ‖x‖ ≥ ‖N(x)‖.

Suppose x 6∈ C. Then, x − N(x) 6= 0, and from Observation 2.1, we have
two options. If 〈x−N(x), N(x)〉 > 0, then the Cauchy-Schwarz inequality gives
‖x‖ > ‖N(x)‖. If 〈x−N(x), N(x)〉 = 0, then by the Pythagorean theorem

‖x‖2 = ‖x−N(x)‖2 + ‖N(x)‖2 > ‖N(x)‖2.
�

Observation 2.3. Let C be a closed convex set in X with p ∈ C, and let
N be the nearest point mapping of X onto C. Since translations T : X →



4 A. DOMOKOS, J. M. INGRAM, AND M. M. MARSH

X preserve convex sets, and the metric projection mapping onto T (C) is the
conjugate mapping T ◦N ◦ T−1, it follows from Observation 2.2 that ‖x− p‖ ≥
‖N(x)− p‖ for all x ∈ X. Moreover, if x 6∈ C, then ‖x− p‖ > ‖N(x)− p‖.

Let F : X → X be a mapping with closed image set C = F (X). The proper-
ties of F , mentioned in Section 1, are as follows.

(F1) F is idempotent.

(F2) For x ∈ X \ C and y ∈ C, if 〈x− F (x), y − F (x)〉 ≥ 0, then

F (tx+ (1− t)y) = tF (x) + (1− t)y for all 0 ≤ t ≤ 1.

(F3) For x, y ∈ X \ C, if F (tx+(1−t)y) = tF (x)+(1−t)F (y) for all 0 ≤ t ≤ 1,

then 〈x− F (x), F (x)− F (y)〉 = 0 = 〈y − F (y), F (x)− F (y)〉.

(F4) For all x, y ∈ X, there exists 0 ≤ s ≤ 1 such that for z = sx+ (1− s)y,

〈z − F (z), F (x)− F (y)〉 = 0.

We offer a few comments related to these properties. A nearest point mapping
onto a closed set must, of course, be idempotent. Properties (F2) and (F3)
together relate inner product conditions between pairs of points x and y and
their images under F to the linearity of F on the line segment [x, y]. In general,
the nearest point mapping to a closed convex set will be highly non-linear.
Property (F4) is a type of mean value theorem for points x and y that have
different images. It ensures that for some point z in the segment [x, y], either
z ∈ C or F projects z orthogonally to F (x) − F (y). Properties (F2) and (F3)
together, or (F2) and (F4) together, ensure that F is the metric projection onto
C, as opposed to some other type of retraction of X onto C (see Examples 5.1,
5.2, and 5.3 in Section 5).

In Section 3, we will show that metric projections onto closed convex sets
satisfy all four of these properties. In fact, they satisfy stronger versions of
properties (F2) and (F3). In Section 4, we show that if F : X → X satisfies
properties (F1), (F2), and one of either (F3) or (F4), then F is the nearest
point mapping of X onto a closed convex set. As a consequence, we have two
characterizations of a mapping that ensure it’s image C is convex and that it is
the metric projection mapping onto C (see Theorems 4.1, 4.2, and 4.3).

As mentioned, we assume that F has a closed image set, but not that F
is continuous. Since Chebyshev sets are closed, if one could show that the
nearest point mapping onto a Chebyshev set C satisfies properties (F2), and
one of (F3) or (F4), then C would be convex, answering the Chebyshev question
mentioned at the beginning of the paper. If the nearest point mapping onto a
Chebyshev set C is continuous, it is known that C must be convex (see [5,
12.8(3)]). We obtain one additional characterization under the assumption that
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F is idempotent, continuous, satisfies (F4), and satisfies a weaker version of
(F2) (see Theorem 4.4).

3. Properties of metric projections onto closed convex sets

In this section, we show that if C is a closed convex set, and N is the nearest
point mapping (metric projection) of X onto C, then N is continuous and
satisfies all of properties (F1) through (F4). That N is idempotent is clear. It
is well-known that N is continuous.

Theorem 3.1 below establishes a characterization of those points x and y for
which the nearest point mapping N is linear on the segment [x, y]. Property
(F3) is a special case of the right-to-left implication in this characterization.

Theorem 3.1. Let C be a closed convex set in X, and let N be the nearest
point mapping of X onto C. Then for x, y ∈ X,

〈x−N(x), N(x)−N(y)〉 = 0 = 〈y −N(y), N(x)−N(y)〉
if and only if

N(tx+ (1− t)y) = tN(x) + (1− t)N(y) for all 0 ≤ t ≤ 1.

Proof. Let x, y ∈ X. Without loss of generality, by Observation 2.3, we may
assume that 0 ∈ C and N(x) = 0.

⇒: Assume that 〈x − N(x), N(x) − N(y)〉 = 0 = 〈y − N(y), N(x) − N(y)〉.
So, with our assumption that N(x) = 0, this reduces to

(A) 〈x,N(y)〉 = 0 = 〈y −N(y), N(y)〉.
We wish to show that N(tx + (1 − t)y) = (1 − t)N(y) for all 0 ≤ t ≤ 1. If

t = 0 or t = 1, the result follows immediately. So, assume that 0 < t < 1.
Let K1 = {λx | λ ≥ 0}◦, and K2 = {λ(y − N(y)) | λ ≥ 0}◦. Note that

K1 and K2 are closed convex cones, so it follows that K◦1 = {λx | λ ≥ 0}, and
K◦2 = {λ(y−N(y)) | λ ≥ 0}, (see Lemma 2, (i) & (ii) in [13]). Let K = K1∩K2;
K is also a closed convex cone. Let P1, P2, and P denote respectively, the metric
projection maps of X onto K1, K2, and K.

By Theorem 1.1, if z is a point of C, then 〈x−N(x), N(x)〉 ≥ 〈x−N(x), z〉,
and 〈y − N(y), N(y)〉 ≥ 〈y − N(y), z〉. So, from (A) and our assumption that
N(x) = 0, we have that

(B) for z ∈ C, 〈x, z〉 ≤ 0 and 〈y −N(y), z〉 ≤ 0.

From (B), it follows that C ⊂ K. By Lemma 3 (viii) in [13], since x ∈ K◦1 ,
P1(x) = 0. That is, 0 is the nearest point of K1 to x. It follows that 0 is the
nearest point of K to x. So, P (x) = 0.

From (A), N(y) ∈ K. Let q be the nearest point of {λ(y−N(y)) | λ ≥ 0} to y.
Then q = y−N(y), and by Lemma 3 (vii) in [13], P2(y) = y− q = N(y). Thus,
we have that N(y) is the nearest point of K2 to y. So, N(y) is also the nearest
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point of K to y; that is, P (y) = N(y). By (A), 〈x, P (y)〉 = 〈x,N(y)〉 = 0; and
since P (x) = 0, we also have that 〈P (x), P (y)〉 = 0 = 〈P (x), y〉.

Recall that t has been chosen with 0 < t < 1. Since K is a closed convex cone,
P is the projection mapping onto K, and P (x) = 0, it follows, from Lemma 3
(iii) in [13], that

P (tx+ (1− t)y) = tP (x) + (1− t)P (y) = (1− t)N(y).

We have that the nearest point of K to tx + (1 − t)y is (1 − t)N(y). Since
N(x) = 0, and C is convex, it follows that (1− t)N(y) ∈ C. Recall that C ⊂ K.
So, it follows that (1− t)N(y) is the nearest point of C to tx + (1− t)y. That
is, N(tx+ (1− t)y) = (1− t)N(y).

⇐: Suppose x and y are points where N(tx+(1− t)y) = tN(x)+(1− t)N(y)
for all 0 ≤ t ≤ 1. Again, we may assume that 0 ∈ C and N(x) = 0. So, our
assumption is N(tx + (1 − t)y) = (1 − t)N(y) for all 0 ≤ t ≤ 1. By Theorem
1.1, we have that 〈x−N(x), N(x)〉 ≥ 〈x−N(x), N(y)〉 and 〈y−N(y), N(y)〉 ≥
〈y −N(y), N(x)〉. This gives us that

(C) 〈x,N(y)〉 ≤ 0 and 〈y −N(y), N(y)〉 ≥ 0.

We wish to show that 〈x,N(y)〉 = 0 and 〈y −N(y), N(y)〉 = 0. By Theorem
1.1, for all 0 ≤ s, t ≤ 1, we have that

〈tx+ (1− t)y− (1− t)N(y), (1− t)N(y)〉 ≥ 〈tx+ (1− t)y− (1− t)N(y), sN(y)〉.
So,

〈tx+ (1− t)(y −N(y)), (1− (t+ s))N(y)〉 ≥ 0.

This gives us that

(D) (1− (t+s))
(
t〈x,N(y)〉+(1− t)〈y−N(y), N(y)〉

)
≥ 0 for all 0 ≤ s, t ≤ 1.

Assume that 〈x,N(y)〉 6= 0. It follows from (C) that 〈x,N(y)〉 < 0 and
〈y−N(y), N(y)〉 ≥ 0. So, there exists a number 0 < t < 1 such that t〈x,N(y)〉+
(1− t)〈y −N(y), N(y)〉 < 0. Let s be chosen so that 0 < s < 1 and t + s < 1.
Then 1− (t+ s) > 0, and the expression in (D) must be negative for t and s so
chosen, which is a contradiction. Hence, 〈x,N(y)〉 = 0.

So, (D) becomes (1− (t+ s))(1− t)〈y −N(y), N(y)〉 ≥ 0 for all 0 ≤ s, t ≤ 1.
Pick any s and t where 1

2
< s, t < 1. Then 1− (t+ s) < 0. Since (1− t)〈y −

N(y), N(y)〉 ≥ 0, it follows from (D) that 〈y −N(y), N(y)〉 = 0. �

Property (F2) follows from Corollary 3.1 below.

Corollary 3.1. Let C be a closed convex set in X, and let N be the nearest
point mapping of X onto C. For x ∈ X and y ∈ C, if 〈x−N(x), y−N(x)〉 ≥ 0,
then

N(tx+ (1− t)y) = tN(x) + (1− t)y for all 0 ≤ t ≤ 1.
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Proof. Let x ∈ X and y ∈ C with 〈x−N(x), y−N(x)〉 ≥ 0. Note that y = N(y).
By Theorem 1.1, 〈x − N(x), y − N(x)〉 ≤ 0. So, 〈x − N(x), y − N(x)〉 = 0. It
follows from Theorem 3.1 that N(tx+ (1− t)y) = tN(x) + (1− t)y. �

Theorem 3.2. Let C be a closed convex set in X, and let N be the nearest
point mapping of X onto C. Then property (F4) holds.

Proof. Let x, y ∈ X. Since N(y) ∈ C, it follows from Theorem 1.1 that 〈x −
N(x), N(y)−N(x)〉 ≤ 0. If 〈x−N(x), N(y)−N(x)〉 = 0, then we choose s = 1,
and we are done. So, we assume that 〈x−N(x), N(y)−N(x)〉 < 0. Similarly,
we may assume that 〈y −N(y), N(y)−N(x)〉 > 0. Since N is continuous, the
function α : [0, 1]→ R, given by α(t) = 〈tx+ (1− t)y−N(tx+ (1− t)y), N(y)−
N(x)〉 is continuous. Since α(0) > 0 and α(1) < 0, there exists s with 0 ≤ s ≤ 1
such that α(s) = 0. So, (F4) holds. �

4. Characterizations

The first two theorems of this section give sufficient conditions for a mapping
F with a closed image set to be a nearest point mapping onto a closed convex
set. Together with results from Section 3, this establishes two characterizations
of such mappings. One additional characterization is obtained by assuming
continuity of the mapping and relaxing property (F2).

Theorem 4.1. Let F : X → X be a mapping with closed image set C = F (X),
and suppose that F satisfies properties (F1), (F2), and (F4). Then C and F
have the following properties.

(i) C is the set of fixed points of F .

(ii) If x ∈ X \ C, then F (x) ∈ bd C.

(iii) C is convex.

(iv) F is the metric projection of X onto C.

Proof. Property (i) follows from the idempotency of F .
For (ii), let x ∈ X \ C. By (i), x 6= F (x). Now, F (x) ∈ C and 〈x −

F (x), F (x) − F (x)〉 = 0. So, applying property (F2), we get that, for all 0 ≤
t ≤ 1, F (tx+ (1− t)F (x)) = tF (x) + (1− t)F (x) = F (x). This equality implies
that the only fixed point of F in the segment [x, F (x)] is F (x). It follows that
F (x) ∈ bd C.

For (iii), suppose that C is not convex. Let y, z ∈ C with the open segment
from y to z contained in X \ C. Let x be a point of the open segment from y
to z. Suppose that F (x) is collinear with y and z, and suppose, without loss
of generality, that F (x) belongs to the half-line starting at x and containing y.
Then 〈x−F (x), z−F (x)〉 > 0. So, by (F2), for all 0 ≤ t ≤ 1, F (tx+(1− t)z) =
tF (x) + (1− t)F (z) = tF (x) + (1− t)z. But this equality implies that all points
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in [F (x), z] are in C, contradicting our choice of y and z. We point out that,
under our assumption that C is not convex, we only needed property (F2) to
get that F (x) is not collinear with y and z. We will need both properties (F2)
and (F4) to reach a contradiction, and establish the convexity of C.

Since F (x) is not collinear with y and z, inside the triangle formed by the
points y, z, and F (x), one of the angles ∠zF (x)x or ∠yF (x)x must be acute.
Assume, without loss of generality, that ∠yF (x)x is acute. Then 〈x−F (x), y−
F (x)〉 > 0, giving us, by (F2), that F is linear on [x, y]. So, for all 0 < t ≤ 1,
we get that

〈tx+ (1− t)y − F (tx+ (1− t)y), F (y)− F (x)〉 = t〈x− F (x), y − F (x)〉 > 0.

But then, by choosing w = 1
2
y + 1

2
x, we violate property (F4) for the points w

and x, giving us a contradiction. Hence, C is convex.
To establish (iv), we also need both properties (F2) and (F4). Let P : X → C

be the metric projection mapping onto C. Let x be in X \ C, and consider
the points x, F (x), and P (x). Note that F (P (x)) = P (x) and P (F (x)) =
F (x) since P (x), F (x) ∈ C. By Theorem 1.1, 〈x − P (x), P (x) − F (x)〉 ≥ 0.
Clearly, we have that 〈P (x) − F (x), P (x) − F (x)〉 ≥ 0; so adding these two
inequalities, we get that 〈x−F (x), P (x)−F (x)〉 ≥ 0. Hence, by property (F2),
F (tx+ (1− t)P (x)) = tF (x) + (1− t)P (x) for all 0 ≤ t ≤ 1.

Let y = 1
2
x + 1

2
P (x). We have that F (y) = 1

2
F (x) + 1

2
P (x). By property

(F4), there exists a number s with 0 ≤ s ≤ 1 such that 〈sx + (1 − s)y −
F (sx + (1 − s)y), F (y) − F (x)〉 = 0. Substituting, in this equation for y and
F (y), using the linearity of F between x and P (x), and reducing, we get that
1
4
(s + 1)〈x − F (x), P (x) − F (x)〉 = 0. Hence, 〈x − F (x), P (x) − F (x)〉 = 0.

It follows that ‖x − F (x)‖2 + ‖P (x) − F (x)‖2 = ‖x − P (x)‖2. From this, and
recalling that P is the metric projection mapping, we have that ‖x− F (x)‖ ≤
‖x− P (x)‖ ≤ ‖x− F (x)‖. So, F (x) = P (x).

�

Theorem 4.2. Let F : X → X be a mapping with closed image set C = F (X),
and suppose that F satisfies properties (F1), (F2), and (F3). Then C and F
have the following properties.

(i) C is the set of fixed points of F .

(ii) If x ∈ X \ C, then F (x) ∈ bd C.

(iii) C is convex.

(iv) F is the metric projection of X onto C.

Proof. As in the proof of Theorem 4.1, properties (F1) and (F2) give us that F
satisfies properties (i) and (ii).

For (iii), assume that C is not convex, and choose points y, z, and x as in
the proof of Theorem 4.1. Again, we get that F (x) is not collinear with y and
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z, and as in the proof of Theorem 4.1, we assume that ∠yF (x)x is acute. Then
〈x − F (x), y − F (x)〉 > 0, giving us, by (F2), that F is linear on [x, y]. Since

x, y ∈ X \ C, it follows from property (F3) that 〈x−F (x), y−F (x)〉 = 0, which
is a contradiction. So, C is convex.

For (iv), let P : X → C be the metric projection mapping onto C. Let
x ∈ X \ C, and consider the points x, F (x), and P (x). Similarly, as in the
proof of Theorem 4.1, we get that 〈x − F (x), P (x) − F (x)〉 ≥ 0. Hence, by
property (F2), F (tx+ (1− t)P (x)) = tF (x) + (1− t)P (x) for 0 ≤ t ≤ 1. Since
P (x) ∈ bd C, it follows that 〈x − F (x), P (x) − F (x)〉 = 0, for otherwise, we
violate property (F3). By Theorem 1.1, 〈x− P (x), F (x)− P (x)〉 ≤ 0. So, 0 ≥
〈x−P (x), F (x)−P (x)〉−〈x−F (x), F (x)−P (x)〉 = 〈F (x)−P (x), F (x)−P (x)〉.
It follows that ‖F (x)− P (x)‖ = 0, and therefore F (x) = P (x).

�

Theorem 4.3 below follows from Corollary 3.1 and Theorems 3.1, 3.2, 4.1,
and 4.2. It provides two generalizations of Theorem 1.4, where C = F (X) is a
closed convex cone, to C being a closed convex set.

Theorem 4.3. Let F : X → X be a mapping with closed image set C = F (X).
Then C is a closed convex set and F is the metric projection of X onto C if and
only if F satisfies properties (F1), (F2), and one of properties (F3) or (F4).

As the reader probably noticed, in Theorems 4.1, 4.2, and 4.3, we didn’t
assume continuity of F . However, all mappings in the examples in upcoming
Section 5 are continuous. It would be of interest to know if, assuming the con-
tinuity of F , there is a weaker version of (F2) that could be used to obtain a
result analogous to Theorem 4.1. We provide a weaker version of (F2) below
that answers this question, providing a third characterization for a mapping to
be the metric projection onto a closed convex set.

(F2′). If x ∈ X \ C, y ∈ bd C, [x, y] ∩ C = {y}, and 〈x− F (x), y − F (x)〉 > 0,
then for all 0 ≤ t ≤ 1, F (tx+(1−t)y) belongs to the convex hull of {x, F (x), y}.

Theorem 4.4 below gives a generalization of Corollary 1 in [13] from closed
convex cones to closed convex sets.

Theorem 4.4. Let F : X → X be a continuous mapping with image set C.
Then C is closed and convex, and F is the metric projection of X onto C if and
only if F satisfies properties (F1), (F2′), and (F4).

Proof. The necessity of properties (F1), (F2′), and (F4) has been shown in
Section 3. We establish sufficiency.

Observe first that the set C is closed, as the fixed point set of a continuous
mapping.
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Notice that for any x ∈ X \ C we have that F (x) ∈ bd C. If not, then
there exists an x ∈ X \ C such that F (x) belongs to the interior of C. By the
continuity of F , there exists open balls U and V such that x ∈ U , F (x) ∈ V ,
U ⊂ X \ C and F (U) ⊂ V ⊂ C. Also, there exist a y ∈ [x, F (x)] ∩ bd C such
that y 6∈ U ∪ V , and y is the closest such point to x. We apply property (F2′)
for x and y, and find that for all u ∈ [x, F (x)]∩U , we have F (u) ∈ [x, F (x)]∩V .
This contradicts (F4).

Assume that C is not convex. Then there exists y, z ∈ C such that [y, z]∩C =
{y, z}. By the continuity of F , there exists x ∈ [y, z] such that F (x) is neither
y nor z. Then x 6∈ C and we consider two cases.

If F (x) is collinear with y and z, then we can assume that F (x) belongs to
the half-line starting at x and containing y. Applying property (F2′) for x and
y, as before, we get a contradiction to (F4).

If F (x) is not collinear with y and z. Inside the triangle with vertices y, F (x),
and z, one of the angles ∠zF (x)x and ∠xF (x)y must be acute. Assume that
∠xF (x)y is acute. Then 〈x−F (x), y−F (x)〉 = a > 0. By the continuity of F ,
we can choose an open ball U with x ∈ U such that U ⊂ X \ C,

(1) 〈u− F (u), y − F (x)〉 ≥ a

2
> 0 , for all u ∈ U ,

(2) 〈u− F (u), y − F (u)〉 ≥ a

2
> 0 , for all u ∈ U ,

and

(3) 〈u− F (u), F (u)− F (x)〉 > 0 , for all u ∈ U ∩ [x, y] .

Let x1 be the intersection of [x, y] with the boundary of U . By property (F2′),
for each u ∈ [x, x1], F (u) belongs to the closed convex hull of {x, F (x), y}. Also,
for each u ∈ [x, x1], since x1 ∈ [u, y], it follows from (F2′) and (2) that F (x1)
belongs to the closed convex hull of {u, F (u), y}. Therefore, the angle made
by the vectors u − F (u) and F (x1) − F (u) is smaller than the angle made by
u− F (u) and y − F (u), and hence

(4) 〈u− F (u), F (x1)− F (u)〉 > 0 .

Adding the inequalities (3) and (4) implies that for all u ∈ [x, x1] we have

(5) 〈u− F (u), F (x1)− F (x)〉 > 0 ,

which contradicts property (F4) for the points x and x1. Hence, C is convex.
Assume that F is not the nearest point mapping. Then, by Theorem 1.1,

there exists x ∈ X \ C and y ∈ C such that 〈x − F (x), y − F (x)〉 = a > 0.
Without loss of generality, we assume that y belongs to the boundary of C,
and [x, y] ∩ C = {y}. By the continuity of F , we can choose an open ball W
containing x with properties analogous to (1), (2) and (3) above. Choosing
x1 = [x, y] ∩ bdW gives us, as before, that for all u ∈ [x1, x] inequality (5)



PROJECTIONS ONTO CLOSED CONVEX SETS IN HILBERT SPACES 11

holds, which contradicts property (F4) for the points x and x1.
Therefore, we conclude that F is the metric projection onto C. �

5. Examples

The following examples show that properties (F1), (F2), and one of (F3)
or (F4) are necessary in the characterization of metric projections onto closed
convex sets, in the sense that the omission of any one of the properties yields an
example of a retraction onto a closed convex set that is not the metric projection
mapping.

Example 5.1. A mapping F : X → X can have a closed convex image, and
satisfy properties (F1) and (F3), yet not be the nearest point mapping onto its
image.

Proof. Let C be the closed convex set in R2 whose boundary is the ellipse
E = {(s, t) | s2 + 4t2 = 4}. Let F be radial projection of R2 onto E for points
(s, t) where s2 + 4t2 > 4; and let F be the identity map on C. Specifically, for
points (s, t) where s2 + 4t2 > 4, let

F (s, t) =
2√

s2 + 4t2

(
s, t
)
.

It is easy to see that F is idempotent, that C = F (X) is closed and convex,
and that F is not the metric projection mapping onto C.

To see that F satisfies property (F3), we let x and y be points of X \ C. If
either both x and y are in C or F (x) = F (y), then clearly (F3) holds.

Suppose that x 6∈ C, and that x and y lie on the same line through the origin
with F (x) = −F (y). Then 〈x−F (x), F (y)−F (x)〉 = 〈x−F (x),−2F (x)〉 6= 0.
Choose 0 ≤ t ≤ 1, where tx+ (1− t)y = F (x). Then F (tx+ (1− t)y) = F (x),
and tF (x) + (1 − t)F (y) = tF (x) − (1 − t)F (x) = (2t − 1)F (x). So, if these
points are the same point, we must have that t = 1, giving that x = F (x); in
which case x ∈ C, a contradiction. So, property (F3) holds in this case.

Lastly, suppose that x 6∈ C, and that F (x) and F (y) are on the ellipse E, but
not on the same line through the origin. Since the open segment from F (x) to
F (y) lies in the interior of C, and part of the open segment from x to y lies in the
complement of C, it is not the case that F (tx+ (1− t)y) = tF (x) + (1− t)F (y)
for all 0 ≤ t ≤ 1.

Next we observe that neither property (F4) nor (F2) is satisfied.
To see that property (F4) is not satisfied, we pick the points x = (2,

√
3) and

y = (4, 0), and will observe that for no point z between x and y is z − F (z)

orthogonal to F (x)− F (y). Now, F (2,
√

3) = (1,
√
3
2

) and F (4, 0) = (2, 0). The

slope of the line segment from (1,
√
3
2

) to (2, 0) is −
√
3
2

. Suppose there is a point

z = (s, 2√
3
s) and z = t(2,

√
3) + (1 − t)(4, 0) for some number t. Equating the
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two, and simplifying, we get that t = 8
7
. So, no z between x and y can satisfy

the orthogonal relation in property (F4).
To see that property (F2) is not satisfied, we pick the points x = (2,

√
3)

and y = F (y) = (2, 0). We observe that 〈x− F (x), y − F (x)〉 ≥ 0; specifically,

〈(2,
√

3)− (1,
√
3
2

), (2, 0)− (1,
√
3
2

)〉 = 1
4
≥ 0. But clearly F does not project the

segment [x, y] linearly onto the segment [F (x), F (y)]. �

Example 5.2. A mapping F : X → X can have a closed convex image, and
satisfy properties (F1) and (F2), yet not be the nearest point mapping onto its
image.

Proof. Let C be the closed convex cone in R2 given by C = {(c, 0) | c ≥ 0}. Let
F : R2 → R2 be defined as follows.

F (s, t) =

 (0, 0) if s ≤ 0 and −s ≥ t
(s, 0) if s ≥ 0 and t ≤ 0
(s+ t, 0) if t ≥ max{0,−s}.

Note that F is the identity mapping on C. It is clear that F is idempotent,
that C = F (X) is closed and convex, and that F is not the metric projection
mapping onto C.

To see that F satisfies property (F2), we consider points in the three regions
over which F has different rules.

Suppose that y ∈ C and x is a point in the first region over which F is
defined. Let x = (s, t) with s < 0, t ≤ −s, and let y = (c, 0) ∈ C. We note that
〈(s, t) − F (s, t), (c, 0) − F (s, t)〉 = 〈(s, t), (c, 0)〉 = cs < 0. So, property (F2)
holds by default for each such pair of points.

For points in the remaining two domain regions of F , we observe that these
two regions are convex and contain C. Also, by definition, F is linear on these
regions. It follows that F is linear on each segment lying in these regions. So,
F satisfies property (F2).

Letting x = (0, 1) and y = (1, 1), it is easy to see that neither property (F3)
nor (F4) is satisfied by F . �

Example 5.3. A mapping F : X → X can have a closed convex image, and
satisfy properties (F1) and (F4), yet not be the nearest point mapping onto its
image.

Proof. Consider

C =

{
(s, t) ∈ R2 | s

2

2
+ t2 ≤ 1

}
.

The boundary of C is the ellipse with parametric equations

s =
√

2 cos v , t = sin v ,

which is the member of the orthogonal curvilinear coordinate system

s = coshu cos v , t = sinhu sin v ,
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corresponding to u = a, where cosh a =
√

2 and sinh a = 1. We define the
mapping F : R2 → C as follows.

F (s, t) =



(s, t) if (s, t) ∈ C
(
√
2s
|s| , 0) if t = 0 and |s| >

√
2

(0, t|t|) if s = 0 and |t| > 1

(
√

2 cos v, sin v) if (s, t) 6∈ C, s 6= 0, t 6= 0,
s = coshu cos v, and t = sinhu sin v.

It is clear that F is continuous and idempotent, but not the metric projection
mapping onto C. To show that F satisfies property (F4), we consider F (x)
and F (y) on the ellipse and in the first quadrant. The computations for the
other cases are similar. Let 0 < v1 < v2 < π

2
, F (x) = (

√
2 cos v1, sin v1),

F (y) = (
√

2 cos v2, sin v2). Then there exists v3 such that v1 < v3 < v2 and
the tangent line at the point (

√
2 cos v3, sin v3) to the boundary of C is parallel

to F (x) − F (y). Then the normal line at the same point is perpendicular to
F (x)− F (y), which means

〈(cos v3,
√

2 sin v3) , F (x)− F (y)〉 = 0 .

Consider v4 such that v3 < v4 < v2, and

sin v3
cos v3

<
sin v4
cos v4

<

√
2 sin v3
cos v3

.

Consider the function f : [a,+∞)→ R defined as follows.

f(u) =



√
2 sin v4
cos v4

if u = a

(sinhu− 1) sin v4

(coshu−
√

2) cos v4
if u > a.

It is easy to see that f is continuous and decreasing. From the inequalities
above, we get that

f(a) >

√
2 sin v3
cos v3

and lim
u→+∞

f(u) =
sin v4
cos v4

<

√
2 sin v3
cos v3

.

Therefore, there exists u1 > a such that

f(u1) =

√
2 sin v3
cos v3

.

The point z satisfying the orthogonal property in property (F4) can be given as

z = (coshu1 cos v4) , sinhu1 sin v4) .

It is clear that F doesn’t satisfy property (F2), since F is not linear on the
segment [x, F (x)] when x 6∈ C. �
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vexes, Rend. R. Accad. Lincei Cl. Sci. Fis. Mat. Nat. 21 (1935), 773-779.
[20] R. R. Phelps, Convex sets and nearest points, Proc. Amer. Math. Soc. 8 (1957), 790-797.
[21] R. R. Phelps, Convex sets and nearest points II, Proc. Amer. Math. Soc. 9 (1958), 867-

873.
[22] I. Singer, Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces,

Springer Verlag, Berlin, 1970.
[23] F. A. Valentine, Convex Sets, McGraw-Hill, New York, 1970, 94-98, 179-182.
[24] E. H. Zarantonello, Projections on convex sets in Hilbert space and spectral theory, in

Contributions to Nonlinear Functional Analysis, Academic Press New York - London,
1971, 237-424.



PROJECTIONS ONTO CLOSED CONVEX SETS IN HILBERT SPACES 15

Department of Mathematics & Statistics, California State University, Sacra-
mento, Sacramento,CA 95819-6051

E-mail address: domokos@csus.edu
E-mail address: jingram@csus.edu
E-mail address: mmarsh@csus.edu


